Non-Equilibrium Thermodynamics: Foundations and Applications.

Lecture 5: Multicomponent heat and mass diffusion

Signe Kjelstrup

Department of Chemistry,
Norwegian University of Science and Technology,
Trondheim, Norway

and

Engineering Thermodynamics Department of Process and Energy, TU Delft

http://www.chem.ntnu.no/nonequilibrium-thermodynamics/

Non-Equilibrium Thermodynamics: Foundations and Applications

	Tuesday, Sept. 7	Wednesday, Sept. 8	Thursday, Sept.9	Friday, Sept.10
9:00-10:30	Why non- equilibrium ther- modynamics?	Transport of heat and mass	Transport of heat and charge	Entropy produc- tion minimization theory
11:00-12:30	Entropy production for a homogeneous phase		Transport of mass and charge	Entropy produc- tion minimization. Examples.
16:00-17:00	Flux equations and Onsager relations	Power from regular and thermal osmo- sis	Modeling the polymer electrolyte fuel cell	

Non-Equilibrium Thermodynamics: Foundations and Applications

Lecture 5. Multicomponent heat and mass diffusion

Chapter 5

Chapter 12

Exercise

Your working procedure

- The entropy production.
 Relating to experiments or models.
- 2. The fluxes and the coefficients
- 3. Equivalent sets of descriptions
- 4. Can the system perform work (separation)?

Diffusion of one-component?

Chemical potential:

$$m = m^0 + RT \ln \frac{p}{p^0}$$

Knudsen effusion, self diffusion

One or two-component diffusion?

DIFFUSION: THE PHENOMENON

 Interdiffusion: in a solid with more than one type of element (an alloy), atoms tend to migrate from regions of large concentration.

The driving forces are related by Gibbs-Duhem's equation:

$$N_1 dm + N_2 dm - SdT - Vdp = 0$$

At constant T,p, the mixture has only one independent driving force!

DIFFUSION: THE PHENOMENON

 Interdiffusion: in a solid with more than one type of element (an alloy), atoms tend to migrate from regions of large concentration.

$$\begin{split} \sigma &= J_1 \left(-\frac{1}{T} \frac{d\mu_1}{dx} \right) + J_2 \left(-\frac{1}{T} \frac{d\mu_2}{dx} \right) \\ &= J_1 \frac{1}{T} \left(1 + \frac{N_1}{N_2} \right) \left(-\frac{d\mu_1}{dx} \right) \end{split}$$

Driving force for component 1, wall frame of reference volume frame of reference

$$\begin{split} J_V &= J_1 V_1 + J_2 V_2 = 0; \\ J_2 &= -\frac{V_1}{V_2} J_1 \end{split} \qquad \qquad = J_1 \bigg(-\frac{1}{T} \frac{d\mu_1}{dx} \bigg) - J_1 \frac{V_1}{V_2} \bigg(-\frac{1}{T} \frac{d\mu_2}{dx} \bigg) \\ &= J_1 \frac{1}{T} \bigg(-\frac{d\mu_1}{dx} + \frac{V_1}{V_2} \frac{d\mu_2}{dx} \bigg) \end{split}$$

Example:

Coupled transports of A(1) and B(2)

- The large gradient in concentration of A drives A to the right
- If C moves only with A or B attached, B can be transported against its concentration gradient.

Membrane transport of two components

A common factor 1/T is absorbed in the transport coefficients

$$J_{1} = -L_{11} \frac{\partial \mu_{1}}{\partial x} - L_{12} \frac{\partial \mu_{2}}{\partial x}$$

$$J_{2} = -L_{21} \frac{\partial \mu_{1}}{\partial x} - L_{22} \frac{\partial \mu_{2}}{\partial x}$$

$$J_{3} = 0$$

Relation to Fick's law, component 1:

$$J_{1} = -D_{1} \frac{\partial c_{1}}{\partial x} = -L_{\mu\mu} \frac{\partial \mu_{1}}{\partial x} = -\left(L_{\mu\mu} \frac{RT}{c_{1}} \frac{\partial \mu_{1}}{\partial c_{1}}\right) \frac{\partial c_{1}}{\partial x}$$

$$L_{12} = L_{21}$$

Onsager relations. When are the coupling coefficients significant?

Transport of A(1) and B(2):

Membrane frame of reference

 $J_{1} = -L_{11} \frac{\partial \mu_{1}}{\partial x} - L_{12} \frac{\partial \mu_{2}}{\partial x}$ $J_{2} = -L_{21} \frac{\partial \mu_{1}}{\partial x} - L_{22} \frac{\partial \mu_{2}}{\partial x}$

Coupling reduces the stationary state diffusion coefficient

$$J_{1} = -\left(L_{11} - \frac{L_{12}L_{21}}{L_{22}}\right) \frac{\partial \mu_{1}}{\partial x} + \frac{L_{12}}{L_{22}}J_{2}$$

When

$$J_{1} \equiv -J_{2}, \qquad L_{12} = L_{21} = -L_{22} = -L_{11}$$

$$J_1 = L_{21} \left(\frac{\partial \mu_1}{\partial x} - \frac{\partial \mu_2}{\partial x} \right)$$

Net work is created.

$$J_1 = -J_2, \quad \sigma = -J_1 \left(\frac{\partial \mu_1}{\partial x} - \frac{\partial \mu_2}{\partial x} \right)$$

Separation work using a membrane

$$J_{1} = -L_{11} \frac{\partial \mu_{1}}{\partial x} - L_{12} \frac{\partial \mu_{2}}{\partial x}$$
$$J_{2} = -L_{21} \frac{\partial \mu_{1}}{\partial x} - L_{22} \frac{\partial \mu_{2}}{\partial x}$$

Defining the co-transfer coefficient

$$au_1 \! \equiv \! \left[\! rac{J_1}{J_2} \!
ight]_{\! d\mu_1 = 0} = \! rac{L_{\!12}}{L_{\!22}}$$

The work done:

 $\Delta \mu_2 = \int_{I} \frac{\partial \mu_2}{\partial x} dx = -\int_{I} \left| \tau_1 \frac{\partial \mu_1}{\partial x} - \frac{1}{L_{22}} J_2 \right| dx$

The gradient in chemical potential of 1 Is used to move 2

Frictional loss

We used the Onsager relation

The Maxwell- Stefan description; invariant to the frame of reference

Example: 3 components

$$\sigma = J_A \left(-\frac{1}{T} \frac{\partial \mu_A}{\partial x} \right) + J_B \left(-\frac{1}{T} \frac{\partial \mu_B}{\partial x} \right) + J_C \left(-\frac{1}{T} \frac{\partial \mu_C}{\partial x} \right)$$

$$= v_A \left(-\frac{c_A}{T} \frac{\partial \mu_A}{\partial x} \right) + v_B \left(-\frac{c_B}{T} \frac{\partial \mu_B}{\partial x} \right) + v_C \left(-\frac{c_C}{T} \frac{\partial \mu_C}{\partial x} \right)$$

$$-\frac{c_{A}}{T}\frac{d\mu_{A}}{dx} = r_{AA}c_{A}(c_{A}v_{A}) + r_{AB}c_{A}(c_{B}v_{B}) + r_{AC}c_{C}(c_{B}v_{B})$$

$$-\frac{c_{B}}{T}\frac{d\mu_{B}}{dx} = r_{BA}c_{B}(c_{A}v_{A}) + r_{BB}c_{B}(c_{B}v_{B}) + r_{BC}c_{B}(c_{B}v_{B})$$

$$-\frac{c_{C}}{T}\frac{d\mu_{C}}{dx} = r_{CA}c_{C}(c_{A}v_{A}) + r_{CB}c_{C}(c_{B}v_{B}) + r_{CC}c_{C}(c_{B}v_{B})$$

Gibbs-Duhem's

$$c_A d\mu_A + c_B d\mu_B + c_C d\mu_C = 0$$

3 Onsager relations,

3 other interdependencies

Three dependent force relations

6 relations among coefficients

$$-\frac{c_{A}}{T}\frac{d\mu_{A}}{dx} = r_{AA}c_{A}(c_{A}v_{A}) + r_{AB}c_{A}(c_{B}v_{B}) + r_{AC}c_{C}(c_{B}v_{B})$$

$$-\frac{c_{B}}{T}\frac{d\mu_{B}}{dx} = r_{BA}c_{B}(c_{A}v_{A}) + r_{BB}c_{B}(c_{B}v_{B}) + r_{BC}c_{B}(c_{B}v_{B})$$

$$-\frac{c_{C}}{T}\frac{d\mu_{C}}{dx} = r_{CA}c_{C}(c_{A}v_{A}) + r_{CB}c_{C}(c_{B}v_{B}) + r_{CC}c_{C}(c_{B}v_{B})$$

$$0 = r_{AA}c_{A}c_{A} + r_{BA}c_{A}c_{B} + r_{CA}c_{C}c_{A}$$

$$0 = r_{AB}c_{A}c_{B} + r_{BB}c_{B}c_{B} + r_{CB}c_{C}c_{B}$$

$$0 = r_{AC}c_{A}c_{C} + r_{BC}c_{B}c_{C} + r_{CC}c_{C}c_{C}$$

$$r_{AB} = r_{BA}, \quad r_{AC} = r_{CA}, \quad r_{CB} = r_{BC}$$

Set of 2x2 force-flux reations

$-\frac{c_C}{T}\frac{d\mu_C}{dx} = r_{CA}c_Cc_A(v_C - v_A) + r_{CB}c_Cc_B(v_C - v_B)$

Maxwell-Stefan equations for any frame of reference

$$-\frac{1}{RT}\frac{d\mu_{A}}{dx} = -\frac{dx_{A}}{dx}\left[1 + \frac{d\ln\gamma_{A}}{d\ln x_{A}}\right] = \frac{x_{B}}{D_{AB}}(v_{A} - v_{B}) + \frac{x_{C}}{D_{AC}}(v_{A} - v_{C}) \qquad D_{ij} = -\frac{R}{cr_{ij}}$$

$$-\frac{1}{RT}\frac{d\mu_{B}}{dx} = -\frac{dx_{B}}{dx}\left[1 + \frac{d\ln\gamma_{B}}{d\ln x_{B}}\right] = \frac{x_{A}}{D_{AB}}(v_{B} - v_{A}) + \frac{x_{C}}{D_{BC}}(v_{B} - v_{C}) \qquad (Relatively)$$
constant

Separation by a selective membrane

Each solution is electroneutral

What are convenient transport equations for components:

PCI,

NaCl,

KCI,

water

Fluxes

A: NaCl.

B: KCI.

C: Water

PCI is at rest, like the membrane.

$$-\frac{dx_{A}}{dx} = \frac{x_{B}}{D_{AB}}(v_{A} - v_{B}) + \frac{x_{C}}{D_{AC}}(v_{A} - v_{C})$$

$$-\frac{dx_{B}}{dx} = \frac{x_{A}}{D_{AB}}(v_{B} - v_{A}) + \frac{x_{C}}{D_{BC}}(v_{B} - v_{C})$$

A temperature gradient can also help separation

$$\begin{split} J_{q} & ' = L_{qq} \frac{\partial}{\partial x} \left(\frac{1}{T} \right) - L_{q1} \frac{\partial \mu_{1,T}}{\partial x} - L_{q2} \frac{\partial \mu_{2,T}}{\partial x} \\ J_{1} & = L_{1q} \frac{\partial}{\partial x} \left(\frac{1}{T} \right) - L_{11} \frac{\partial \mu_{1,T}}{\partial x} - L_{12} \frac{\partial \mu_{2,T}}{\partial x} \\ J_{2} & = L_{2q} \frac{\partial}{\partial x} \left(\frac{1}{T} \right) - L_{21} \frac{\partial \mu_{1,T}}{\partial x} - L_{22} \frac{\partial \mu_{2,T}}{\partial x} \end{split}$$

Cf. Lecture 4 and 6: Heat and mass transport couple at the interface

Linear flux-forces relations for the I and o -sides of the membrane interface

$$\Delta_{i,s} \frac{1}{T} = r_{qq}^{s,i} J_q^{'i} + r_{qm}^{s,i} J_m^{i}$$

$$-\frac{1}{T^s} \Delta_{i,s} \mu_{m,T} (T^s) = r_{mq}^{s,i} J_q^{'i} + r_{mm}^{s,i} J_m^{i}$$

$$\Delta_{s,o} \frac{1}{T} = r_{qq}^{s,o} J_q^{'o} + r_{qm}^{s,o} J_m^{o}$$

$$-\frac{1}{T^s} \Delta_{s,o} \mu_{m,T} (T^s) = r_{mq}^{s,o} J_q^{'o} + r_{mm}^{s,o} J_m^{o}$$

Coupling at interfaces is essential when the enthalpy of the phase transition is large

Summary

- Multicomponent heat and mass diffusion can be described in several equivalent ways
- One way translates into another via the entropy production
- The origin of work is the coupling coefficient, the co-transfer coefficient for diffusion, or the heat of transfer for thermal diffusion
- The coupling coefficient can be of the same order of magnitude as the other transport coefficients in membrane transport