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Non-Equilibrium Thermodynamics: Foundations and Applications

10. Entropy production minimization theory
”How do we find the optimal operation of a process unit?”

Chapter 9



Process units, examples
• Heat exchangers
• Distillation columns
• Chemical reactors
• …..

Several units in a whole process (flowsheet).  

First: The method. 
Expansion of ideal gas and heat exchange



A work producing process

• The maximum available work output

• The lost work 0)/( 0  dtdSTw irrlost

lostwww   max

 /irrdS dt dV= sò
Optimal means: 
minimum total entropy production given a fixed demand on the process



Mathematical methods
for constrained optimisation

• Uses the a local formulation of the optimisation
problem

• Defines control variables and state variables
• Mathematically robust
• An autonomous Hamiltonian is constant along

the path

• Uses the objective
function directly

Control theory
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Energy balance   ....

Momentum balance ....

Mass balance  ....
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Optimal isothermal expansion of an 
ideal gas: 



Optimal isothermal expansion

• Find the external pressures in a 
K-step process that gives
minimum total entropy production,
when the volume of the system 
changes from V1 to V2
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Assume that the piston moves according to:

f is related to the friction between piston and wall



Total entropy production 
for a K-step process

Control theory uses the local entropy production:

Prefer to sum over process duration

The Hamiltonian becomes: Constraint

Control variable



The Hamiltonian is 
autonomous
(depends only 
implicitly on time) 
and is therefore 
constant !

Solve for Lagrange multiplier from: 

By introducing the result in the Hamiltonian, we find

The Hamiltonian reduces to the entropy production
which then also is constant along the path! Equipartition of entropy production



The optimal path

The pressure variation giving
minimum lost work
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Solution:

The entropy production is constant 
along the optimal path!



1, 3, 5 and 15 step expansion results

N = 1 mol  T = 298 K  p1 = 20 bar  p2 = 10 bar  
f = 500 m3 Pa/s    
Θ = 10 s



Continuous Expansion of Gases in a Turbine

„Multistage“ gas 
turbine – a 
realization of the K-
step expansion
case? 



Optimal heat exchange



Optimal heat exchange
• Find the temperature profile Th(z) that gives

minimum entropy production, when a given amount
of heat is transferred from the hot fluid

Constraint

'

'

( ) ( )

( )( )
p h q

qh

p

FC dT z J z ydz

J z ydT z
dz FC

 




, , and h in h outT T

Fixed heat transferred, with fixed:

Energy balance gives local constraint:



The entropy production of heat exchange
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Hamiltonian:

• 3 
differential 
eqs. 

• Solve the 
last one for 
λ, introduce
result in 
Hamiltonian

• Result:



Optimal heat exchange: Results

• Exact solution: Constant 
entropy production (EoEP)

• Approximate solution: 
Constant thermal force (EoF)
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The local and total entropy production for heat exchange



Why do we minimize the entropy production?

• We can obtain a realistic target for the 
efficiency of a process unit

• We can compare processes when we use the 
yardstick that measures lost work

• We can find typical behaviour (i.e. 
equipartition): thumb rules



Summary: 

1. Energy efficient design means to take the entropy 
production into account! 

2. The path of minimum total entropy production can be
found for operation of certain process units, given certain 
boundary conditions

3. Use control theory to find it!
4. The operating path has constant local entropy production

in simple cases (expansion of ideal gas, heat exchange)
5. Constant driving force is a good approximation to a state 

with constant local entropy production in heat exchange


