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Non-Equilibrium Thermodynamics: Foundations and Applications

10. Entropy production minimization theory
"How do we find the optimal operation of a process unit?”

Chapter 9

S Non-Equilibrium
'!I‘ Thermodynamics
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Process units, examples

* Heat exchangers
 Distillation columns
e Chemical reactors

Several units in a whole process (flowsheet).

First: The method.
Expansion of ideal gas and heat exchange



A work producing process

 The maximum available work output
W = W max — Wiost
» The lostwork ~ Wiost =T o(dSirr /dt) > 0

ds. /dt = fgdv

Optimal means:
minimum total entropy production given a fixed demand on the process



Mathematical methods
for constrained optimisation

Control theory
H=0(z,t)+ > X\ (z1)f

Euler Lagrange optimisation:

dSirr
L_?+§ijxie

Energy balance f —d—T—
Constraint examples: o Toodz T
P=H Momentum balance f | = dp =...
_ dz
Ta _ TO d
Mass balance fg = —i =....
dz

« Uses the objective

: : Extra conditions, i.e. p,,, = const.
function directly ‘

« Uses the a local formulation of the optimisation
problem

« Defines control variables and state variables

 Mathematically robust

* An autonomous Hamiltonian is constant along
the path Pontryagin



Optimal isothermal expansion of an
ideal gas:

dw

DPext(t) I

¥

Ideal gas
pit), Ty, V1), N
dq
—

Fieure 9.1 A container hlled with N mol of an ideal gas with
pressure pl(t), temperature Tp, and volume V(£). The heat dg
15 added to the gas and work dw is done in a small time in
terval df.  The container is equipped with a piston. The gas
expands isothermally against an external pressure peg(£). The
temperature of the environment is Ty,



Optimal isothermal expansion

* Find the external pressures in a N moles of ideal gas
K-step process that gives In apiston, K=1
minimum total entropy production,
when the volume of the system w_ = NRT,InP2

changes from V, to V, P

v/

W= _J. pextdV = pext & NRTOd [l} = —NRTO (i_i)
v 8 p P, P ool
a 15}
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Assume that the piston moves according to:
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f is related to the friction between piston and wall



Total entropy production |
Prefer to sum over process duration

for a K-step process |
A/A/Control variable

d Sy 21 ] _ dV (t)
— _— ext.i - . it
& ;[_! = (o = p(0) (~T52)
K
. 1 1 i
=—-NRH Denct i — + In —
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Control theory uses the local entropy production:

1 . IV (t)
o(t) = (et (t) = (1)) (—‘ )

o

o “% Poa(t) — p(1)]
The Hamiltonian becomes: Constraint
v
L f 2 .
= T D) (Pext(t) — p(t))” + Alt) N R (Pext(t) — p(L))



The Hamiltonianis | ¢

_ 2 f |
(depends only
' ICI ' ip(t IH |
implicitly on time) fi[t] e '""-"IJ;T () — (1) o
and is therefore a1 g P (1) ;
constant ! i op T pap Pl —pU0)) a0 FEm

(0.13)
. _ o} 1 f _ I

Solve for Lagrange multiplier from: 7= =27 -5 (P(0ex = p(0) + A1) Tz = 0

By introducing the result in the Hamiltonian, we find

- 1
f_]._[?-.”-:l —_ f —
Ty p(t)*

| —

_ 2, f _ 2
(Pext(t) — p(t))" — Eﬁ POE (Pext(t) — p(1))

The Hamiltonian reduces to the entropy production
which then also is constant along the path! Equipartition of entropy production



The optimal path

The pressure variation giving
minimum lost work

Max. work /

25

Solution: %
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The entropy production is constant
along the optimal path!



1, 3, 5 and 15 step expansion results
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Continuous Expansion of Gases in a Turbine

,Multistage” gas
turbine — a
realization of the K-
step expansion
case”?




Optimal heat exchange
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Optimal heat exchange

* Find the temperature profile T,(z) that gives
minimum entropy production, when a given amount
of heat is transferred from the hot fluid

Constraint —
Fixed heat transferred, with fixed: T Hot Muid
Th,in and Th,out : _

! [ T, -'.—E—{'nlil MM
Energy balance gives local constraint: | | B L |
al o III = Metal plate
FC,dT,(2) = ‘J('q (z)Aydz g — ?T ____
R T, =——Haot fuid
dT, (z) _ J4(2)Ay Lo
dz FC

p




The entropy production of heat exchange

d ( 1 . Cold fluid

o(X, Z):‘J(;(X’ 2) L J | S Hot fluid
dx\T(x,2) ]_) A

J,(x,2)=3,(2)

7 ij Ton0 AyJ . )L_ (2) T 12)} 5| b I". . - Metal plate
| . ! L ) T T, = Hot fluid
so1af2)

ds. .
dr ija(z)dz—ij qq [quz




1 Ay J,(2)

Hamiltonian: H = Ayl (Th(2)) [ﬂa (T)] + A(2) FC, (T,(2) — constant

3 dTu(z) 0K d\(z) 0K
differential dz AN dz aTy,
egs.
N 1 Alz) 1
— Ayl (Tu(2) 2A (=) + —2 _
o, = A laa (Ti(2)) [ (T) FC, [Ts.[-’:]}] TR "

Solve the
last one for
A, Introduce
result in

Hamiltonian \

_ 1\]° 1
5 =8yl (1) (8 (7)| —2802) 8 ()
Result: = — 7(2) = constant



Optimal heat exchange: Results

The local and total entropy production for heat exchange

]' F ('_",l.:' T‘I: SO
ORoEP = In

__“».“r; U L Th Jin

 Exact solution: Constant
entropy production (EoEP)

« Approximate solution:

)]

Constant thermal force (EoF)
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Why do we minimize the entropy production?

* We can obtain a realistic target for the
efficiency of a process unit

* We can compare processes when we use the
yardstick that measures lost work

* We can find typical behaviour (i.e.
equipartition): thumb rules



Summary:

Energy efficient design means to take the entropy
production into account!

The path of minimum total entropy production can be
found for operation of certain process units, given certain
boundary conditions

Use control theory to find it!

The operating path has constant local entropy production
in simple cases (expansion of ideal gas, heat exchange)

Constant driving force is a good approximation to a state
with constant local entropy production in heat exchange



