Non-Equilibrium Thermodynamics: Foundations and Applications.

Lecture 6: Power from regular and thermal osmosis

Signe Kjelstrup

Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway

and

Engineering Thermodynamics Department of Process and Energy, TU Delft

http://www.chem.ntnu.no/nonequilibrium-thermodynamics/

Non-Equilibrium Thermodynamics: Foundations and Applications

	Tuesday, Sept. 7	Wednesday, Sept. 8	Thursday, Sept.9	Friday, Sept.10
9:00-10:30	Why non- equilibrium ther- modynamics?	Transport of heat and mass	Transport of heat and charge	Entropy produc- tion minimization theory
11:00-12:30	Entropy production for a homogeneous phase	Multi-component heat and mass diffusion	Transport of mass and charge	Entropy produc- tion minimization. Examples.
16:00-17:00	Flux equations and Onsager relations	Power from regular and thermal osmo- sis	Modeling the polymer electrolyte fuel cell	

Non-Equilibrium Thermodynamics: Foundations and Applications

6. Power from regular and thermal osmosis

Chapter 18

Exercise

A new renewable power source from mixing river water and salt water

$$W_{ideal} = -\Delta G_{mix} \approx T \Delta S_{mix} = RT \ln x_w$$

= 30.8 J/mol

Fresh water: 55.5 kmol/m^3 Salt water: 54.9 kmol/m^3 1 m^3 can be lifted ~ $165 \text{ m} (20^{\circ}\text{C})$

Potential

Two plant types

• Osmotic power plants

(Pressure retarded osmosis, PRO)

- Uses water flow (osmosis).
- Technology development goes back 30 years
- Statkraft, Norway, has been active since 1997
- Reverse electrodialysis plants (cf. Lecture 8)
 - Uses salt movement
 - Old idea, recent technology
 - Dutch technology leadership by Wetsus

Osmosis and reverse osmosis

- Semipermeable membrane retains salt
- A net flow of water arise to the salt water side; one driving force, one flux
- Pressure increases spontaneously on the salt water side, depending on the salt concentration, and retards the flow (PRO)

Pressure retarded osmosis

The entropy production and the osmotic flux

Equilibrium condition:

$$\mu_w (1:sea) = \mu_w (2:river)$$

$$\mu_w^{\ 0} + RT \ln x_w + V_w p_1 = \mu_w^{\ 0} + V_w p_2$$

$$\Pi_{J_w=0} = p_1 - p_2 = \frac{RT}{V_w} \ln x_w = \frac{8.31 \cdot 293}{18 \cdot 10^{-6}} \ln(\frac{54.9}{55.5}) \text{ Jm}^3 = 14.7 \text{ bar}$$

In practice: A pressure retarded process (PRO). Membrane plant in a sub-sea rock cavern

Pilot plant at Tofte, Hurum, Norway

Why develop salt power plants?

- A large power potential compared to other new renewable power sources
- Stable and predictable power production
- Competitive at 50 €/MWh in year 2020 reflecting Sustainable Energy Systems, EU FP5 Work Program
- Less dependent on external infrastructure than H₂- fuel cells and CO₂-free gas power plants
- Green certificate potential
- BUT: Needs large and costly membranes

Thermal osmosis – a second possibility?

Question: Can a difference in temperature be used to enhance power production?

Nafion, a cation exchange membrane

Transport of heat and mass across the membrane of the polymer electrolyte fuel cell Stationary state transport *across* the interfaces:

$$\begin{split} \Delta_{\mathbf{i},o}\frac{1}{T} &= r_{qq}^{s}J_{q}^{h} + r_{qm}^{s,1}J_{m} \\ &-\frac{1}{T^{o}}\Delta_{\mathbf{i},o}\mu_{m,T}\left(T^{o}\right) = r_{mq}^{s,1}J_{q}^{\prime i} + r_{mm}^{s,1}J_{m} \\ J_{m}^{i} &= J_{m}^{o} = J_{m}, \qquad J_{q}^{\ 'i} + J_{m}H^{i} = J_{q}^{\ 'o} + J_{m}H^{o} \\ \end{split}$$
Surface heat of transfer
$$q_{m}^{*s,i} = \left(\frac{J_{q}^{\prime i}}{J_{m}}\right)_{\Delta_{\mathbf{i},o}T=0} \end{split}$$

The surface heat of transfer, a faction of the enthalpy of adsorption

$$q_m^{*s,o} - q_m^{*s,i} = -\Delta_{i,o}H_m$$

6+2 equations of transport for water and heat across the membrane:

$$J_{q}^{'m,a} - J_{q}^{'a} = J\Delta H$$
2 Energy balances
$$T^{m,a} - T^{a} = -\frac{1}{\lambda^{s}} \left(J_{q}^{'a} - q^{*s}J \right)$$

$$J_{q}^{'c} - J_{q}^{'m,c} = -J\Delta H$$
2 Energy balances
$$T(x)$$
-profile
$$\frac{dT}{dx} = -\frac{1}{\lambda^{m}} \left(J_{q}^{'m} - q^{*m}J \right)$$
Chemical potential
$$T^{c} - T^{m,c} = -\frac{1}{\lambda^{s}} \left(J_{q}^{'c} - q^{*s}J \right)$$
profile
$$\Delta_{a,m} \mu_{T} = -\frac{RT^{m,a}}{D^{s}c^{s,a}}J - \frac{q^{*s}}{T^{m,a}}\Delta_{a,m}T$$

$$\frac{\rho RT}{cM} \frac{d\lambda}{dx} = -\frac{RT}{cD^{m}}J - \frac{q^{*m}}{T} \frac{dT}{dx}$$

$$\Delta_{m,c} \mu_{T} = -\frac{RT^{m,c}}{D^{s}c^{s,c}}J - \frac{q^{*s}}{T^{m,c}}\Delta_{m,c}T$$

Water concentration in the membrane mol/kg $c = \rho \lambda / M$

Polymer density, no of water molecules per polymer site, polymer weight

Experimental input

 Relation between water activity a and water content λ: Springer et al, 1991

$$\lambda = 0.0043 + 17.81a - 39.85a^2 + 36.0a^3 \text{ for } 0 < a < 1$$

$$\lambda = 14 + 1.4(a - 1) \text{ for } 1 < a < 3$$

4

• Enthalpy of absorption as a function of water
content
$$\Delta_{ads}H = (115 - 5\lambda)10^3 \qquad \lambda < 14$$

$$\Delta_{ads}H = 45x10^3 \qquad \qquad \lambda > 1$$

Springer et al, 1991

- Membrane thicknesses: 180 μm (Nafion 117) and 50 μm (Nafion 112)
- Interface thickness: 10 µm
- Membrane diffusion coefficient

$$D^{m} = \exp(2416(\frac{1}{303} - \frac{1}{T}))(2.563 - 0.33l + 0.0264l^{2})$$
$$- 0.000671l^{3})x10^{-6} \quad (\text{cm}^{2}/\text{s}) \quad \text{for } l > 4$$

- Membrane thermal conductivity 0.2W/K.
- Membrane heat of transfer -100 J/mol
- Interface diffusion coefficient and thermal conductivity: ten times smaller
- Interface heat of transfer:
- Water transference coefficient (electroosmotic drag): 2.5

$$q^{*_{s,i}} = 0.3\Delta H$$

What happens when $\Delta T = 0$?

The temperature is T= 350 K on both sides. Gas activities are $a^a = 0.8$ and $a^c = 1.0$ The water flux produced by this: -9.1x10⁻⁶ mol/m² s.

	Side a	Membrane side a	Membrane side c	Side c
Activity	0.80	0.87	0.96	1.00
Water content	7.1	9.1	12.1	14.0
Heat flux	0.44	-0.27	-0.27	0.13

Isothermal heat transfer: Heat transfer at constant *T***!**

The fraction of the enthalpy transported left and right is given by the coupling coefficient

What happens when $\Delta T \neq 0$? (Soret equilibrium*, cf. Lecture 4)

Water content, diffusion coefficient

What happens when $\Delta \mu_T = 0$?

The flux of water due to a thermal force given by 10 K is 1x10⁻⁶ mol/m² s (zero chemical force)

Heat fluxes and membrane temperatures following a water flux

	Side a <i>T</i> = 350 K	Membrane Side a	Membrane Side c	Side c
Gas activity	0.70	0.99 (0.93)	0.64 (0.51)	0.50
Water content	5.3	13.9 (10.8)	4.6 (3.5)	3.4
Heat flux	14862/8605	14863 / <mark>8606</mark>	14863/ <mark>8606</mark>	14861 / <mark>8604</mark>
Temperature	350	335.1 (341.4)	321.8 (333.7)	306.9 (<mark>325.1</mark>)
<i>D</i> ^m (m²/s)		2.7 (3.0) 10 ⁻¹⁰	2.5 (4.6) 10 ⁻¹⁰	

The set water flux: $1.9 \times 10^{-5} \text{ mol/m}^2 \text{ s.}$

Blue numbers: Calculations using zero coupling coefficients

Observations of practical significance

- A temperature gradient can enhance or counteract the osmotic effect.
- The sign of the effect is decided by the nature of the membrane and thus the coupling coefficient
- If heat is transferred along with the solvent, an enhancement can be expected in the direction of the thermal force.

Summary

- A systematic description of coupled transports of heat and mass across heterogeneous systems is feasible with nonequilibrium thermodynamics
- The coupling coefficient for heat and mass transfer at interfaces cannot be neglected in a thermodynamically consistent model
- A thermal force may enhance/ counteract a mass flux through a membrane that is not inert
- Neglect of coupling coefficients gives large errors in the heat fluxes out of the membrane

Exercise

- Calculate the ideal work obtainable by mixing 1 mole of water into an excess of sea water at 293 K. Sea water has 54.9 kmol/ m³ water and 0.6 kmol/m³ salt (NaCI).
- 2. Where do you expect to find the largest dissipation of energy in a pressure retarded osmosis cell?