Non-Equilibrium Thermodynamics: Foundations and Applications.

Lecture 2. Entropy production for a homogeneous phase

Signe Kjelstrup
Department of Chemistry,
Norwegian University of Science and Technology,
Trondheim, Norway
and
Engineering Thermodynamics

Department of Process and Energy, TU Delft

http://www.chem.ntnu.no/nonequilibrium-thermodynamics/



Non-Equilibrium Thermodynamics: Foundations and Applications

Tuesday, Sept. ¥ | Wednesdayv, Sept. 8 | Thursday, Sept.9 Friday, Sept.10
9:00-10:30 Why non- Transport of heat | Transport of heat | Entropy produc-

equilibrium ther- and mass and charge tion minimization

modynamics? theorv

11:00-12:30 tropyv production | Mulfi-component | Transport of mass | Enftropy produc-

or a homogeneous heat and mass and charge tion minimization.

phase diffusion Examples.

16:00-17:00 | Flux equations and | Power from regular Modeling the

Onsager relations | and thermal osmo- | polymer electrolyte

sis fuel cell




Non-Equilibrium Thermodynamics: Foundations and Applications

Lecture 2. Entropy production for a homogeneous phase

Text: Chapter 3

Exercise 2

”The heart of the theory”

Non-Equilibrium
Thermodynamics
for Engineers

5 Kjelstrup « D Bedeaux
E Johannessen » J Gross

‘World Scientific



Finding the entropy production

We always combine:

1. Gibbs equation,
2. the first law
3. and mass balances
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Gibbs equation for an open system
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The first law of a system with transport of
heat, mass and charge and chemical reaction®
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The total heat flux is the sum of the measurable heat flux and
latent heat transported
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Mass conservation

The reaction rate r P= S v
and the reaction o
Gibbs energy
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Deriving

the entropy production
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A practical problem:

« The total heat flux cannot be R
measured o= J,+ Zl: H;.J;
_il=

 We would like to replace the total
heat flux by the measurable heat
flux as a variable
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 |n order to combine terms better
we need the derivative of
w /T



Mathematics for state functions:

dG = —SdT +Vdp+> N,

dp, =—S,dT +V,dp+>_ %] dN,
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The differential of the chemical potential ‘
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it
gives the expression we introduce
in the entropy production
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This form can be related to experiments!



A basic assumption: Local equilibrium exists

There is local equilibrium
in all volume elements

05 R ; —

Meaning: Molecular
velocity distributions are
nearly Maxwellian
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In this example, this is
applies to a chemical
reaction (2 fluorine atoms
react to the molecule)

distribution function
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Why we must use the entropy
production to define dissipation

Consider an 1
Example of
three reservoirs J 3t J 2
with heat transport \
between them 3,23

3 ) 2

The total entropy  dS, . 1 dU, L1 du, L1 dU,
production is: dt T, dt T, dt T, dt
— Jq1,2 i_l +Jq2,3 i_i +Jq3,l l_i
T, T, T, T, T, T,
dS dS dS

This dissipation function gives zero losses! (b =T1—1+T2 —24T,—=0

dt dt  ° dt

=0




Understanding
the entropy production as lost work

Examples

« Charge transport
 Heat transport
 Mass transport
 Chemical reactions



Lost work In electric conductors
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Lot work ? heat transport

« Considera heatéd pa\;ement, area Q. A heating plate, 8 cm
below, is turned on at 343 K when the snow starts to fall. What
is the lost work per volume during heating?

Fourier's law for heat conduction is J° = —A(dT/dz). The entropv production is
g ¥ !

rather large:
AT /1 1
de == | J—(=)dz = —\ -
.sz'“ / Dz “ 2 (Tg Tl)
- (=70) (1 1 -
0.7 — 5.7 W/I
(0.03)2 ( 273 343) R

Lost work: 1,56 kW /m?3




Potential work, lost by diffusion

« The energy available for
work in this concentration
cell is represented by the

Ag AgNO; (aq) Ag concentration gradient of

the salt.

 Diffusion will after some
| Crg time make the system
homogeneous.

Ag*

C'/ kmal m™3

- Example:

/ X/m T=300 K, R=8.31 J/JK mol, c=1 kmol/m3

D =10°m?2 /s, dc/dx = -103 mol m#

Two electrodes of silver o = (-Ddc/dx)(-(R/c)dc/dx) = 105 J/s K m-3
in a non-uniform

solution of silver nitrate



Lost work In chemical reactors
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Can be very large! The engineering challenge



Properties of the entropy production (ep)

The ep determines conjugate flux-force pairs
We find the form of ep without knowledge of the fluxes!
The ep-value is independent of the frame of reference

A change in one flux can lead to a change in a force not
conjugate

Equivalent forms of the ep exists. Other forms can be
found, i.e. using the entropy flux;

1 k 1 , L
Jo = T (*}q _Z .f"_:ijj) =T (J;], —I—Z .Evj,fj)
i=1 =1

The form to use depends on the application



Summary

1. The lost work can studied in terms of fluxes
and forces

The lost work is large in systems that
transport heat or have chemical reactions.

The smaller the gradients and the rates are,
the smaller is the lost work

When we want to accomplish a task, i.e.
have a certain amount of heat exchanged,
the question arises: Do we have a choice
between paths with different entropy
production?

s W D

> The answer to this question is discussed in Lectures 10,11



Exercise to Lecture 2
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1. What is the conjugate force of the measurable heat flux?
The total heat flux?

« What is the conjugate force of the electric current
density

« What is the conjugate flux of the gradient —d(u/T)dx

2. Describe the difference between the thermodynamic driving
forces and the driving forces from the simple transport laws.
Can the two descriptions be compatible?

3. Find the entropy production due to a heat flux through the
bottom of an aluminium pan with boiling water. The surface of
the heating plate is 150 °C. The bottom is 1,0 cm thick and its
area is 3.0 dm3. The thermal conductivity is 237 W/K m.



