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7. The entropy production and the force-flux relations
for the square gradient model

In order to verify the properties that are hopefully true for the
description in terms of excess densities, we must carry the
analysis further for the continuous square gradient model and 
proof these properties. To begin with we only consider flow
normal to the surface in a one-component system.

Balance equations

Conservation of matter: ( , ) ( , ) ( , )v( , )c x t J x t c x t x t
t x x
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The barycentric time derivative is:

For the molar volume it follows that:



For a system without gravitational forces or viscous friction
we have:

where M is the molar mass.
The total molar energy is the sum of internal and kinetic energy:

The total molar energy is conserved:

The heat flux is defined by:

Substitution in the energy conservation law gives:

For the kinetic energy we have:



Combining the last two equations gives for the internal energy:

The entropy balance is:
The entropy production

Now we should substitute the balance equations into the
Gibbs relation to obtain explicit expressions for the entropy
flux and the entropy production.



The Gibbs relation

In order to further proceed we must now postulate the Gibbs
relation. The only way to verify its validity is that the further
results make sense in the thermodynamic description.

In the homogeneous phases so that the first term on
the right hand side reduces to the usual form dU/dt.

In the interfacial region the difference between the parallel
and the normal pressure leads to a difference.

It is definitely not correct to use the above expression with
the parallel pressure. The description is then found to make 
no sense.



The entropy flux and production

Substitution of the balance equations for the internal energy
and the molar volume gives:

It follows that the entropy flux and production are given by:

This are the usual expressions in a 1-component system



The force-flux relation

In non-equilibrium thermodynamics it follows from the
entropy production that the force-flux relation is given by:

Alternatively we may write this as:

This is Fourier’s law.     Is the thermal conductivity. We will
refer to r as the thermal resistivity. In order to satisfy the
second law both r and       are positive.

We note that we adsorbed a factor T-2 from the
thermodynamic force in the resistance.



The continuous thermal resistivity

For the numerical analysis we need explicit values of the
resistivity. In view of the fact that all thermodynamic
quantities may depend on the spacial derivatives of the
molar density we now have:

The expression must be such that r >0 to satisfy the 2nd law.

The first two terms give a contribution which changes smoothly
from the vapor to the liquid value through the interfacial region. 
The last term contributes a peak in the interfacial region. 



For the values along the coexistance one should preferably use
experimental data when these are available. 

In molecular dynamics simulations a small peak was found on
the vapor side of the surface. We therefore used the following
expression for alpha:

In the outset we expected the contribution due to the peak to 
increase with the surface tension. This is the reason for the
factor m. This was not correct. In the work with Glavatskiy we
therefore changed the choice of . mα
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8. Numerical solution method for stationary states
As it is not possible to solve the various equations analytically
we have to use numerical methods. For stationary states it 
follows from the balance equations that

are independent of the position. Furthermore we need a 
scaling length for which we use:

where the correlation length in the liquid is given by:

For 200 bar we find xs= 2.8062 nm



We used  alpha = 5x10-4 for the figures on the following page



This enabled us to calculate stationary temperature and density profiles



• The temperature profiles are most interesting. They show large 
gradients of the temperature of up to 108 K/m. 

• In the interfacial region we see that the profile may have a peak
(or a dip) above (below) the extrapolated profiles from the
homogeneous phases.

• The density profiles for the pressure changes have only rather
small changes.

• The density profiles for the temperature changes in the liquid
are due to the change of the coexistence density of the liquid
with the temperature. The location of the interface has a 
corresponding change to keep the total mass in the box the
same.



As one can see in the
figure for the Helmholtz
energy for TL102, one
needs to extrapolate the
densities from the bulk 
phases to the surface. 
The vertical line is the
equimolar surface. It is 
important to realise that

Using the profiles of the mass, energy and entropy densities
one can calculate all the excess densities relative to a dividing
surface xs.

The extrapolation procedure leads to a certain numerical error in 
the excess densities obtained. This is a pity but it is unavoidable.

We have already discussed how to obtain excess densities. 
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