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The first part of this lecture series will focus on the description
of the liquid-vapor interface in a one-component fluid.

I will use the 23rd chapter of a book I have written together with
Signe Kjelstrup:

Signe Kjelstrup and Dick Bedeaux, Series on Advances in Statistical 
Mechanics-Vol. 16, Non-Equilibrium Thermodynamics of Heterogeneous 
Systems, World Scientific, Singapore, 2008.

This chapter is based on earlier work I did with Eivind 
Johannessen and Audun Røsjorde on the non-equilibrium van 
der Waals square gradient model:

• D. Bedeaux, E. Johannessen, A. Røsjorde, 
The Non-equilibrium van der Waals Square Gradient Model I: The Model and its 
Numerical Solution, Physica A 330 (2003) 329-353.
• E. Johannessen and D. Bedeaux, 
The Non-equilibrium van der Waals Square Gradient Model II: Local Equilibrium 
of the Gibbs Surface, Physica A 330 (2003) 354-372. 
• E. Johannessen and D. Bedeaux, 
The Non-equilibrium van der Waals Square Gradient Model III: Heat and Mass 
Transfer Coefficients, Physica A 336 (2004) 252-270



The book describes much of what we did on the
description of transport through and into interfaces

Signe Kjelstrup and Dick Bedeaux, 
Non-Equilibrium Thermodynamics of Heterogeneous Systems; World Scientific, 2008; 
Series on Advances in Statistical Mechanics, Vol. 16.



Transport of n-butane through and into a zeolite crystal.

• Molecular description

• Continuous description

• Macroscopic description with excess densities

All these descriptions have their strengths and weaknesses.

All three of them have something to add and should therefore
be pursued.

How they are related is very important.



Experiments Fang and Ward for the evaporation
of water

Phys. Rev. E 59 (1999) 417-428
D. Bedeaux and S. Kjelstrup, Transfer Coefficients for Evaporation, 
Physica A, 270 (1999) 413-426,

Just to show that really remarkable things happen at surfaces



Experiments Badam, Kumar, Durst, 
Danov for the evaporation of water

Exp. Thermal and Fluid Sc. 32(2007)276-292

Quote:



1. The van der Waals equation of state

The van der Waals equation of state for one component is:

The resulting critical temperature, pressure and volume per 
mole are:

For water we use A=0.339        
J m3mol-2 and B=1.87 10-5 

m3mol-1. These reproduce
Tc=646 K and Vc=5.61 10-5

m3mol-1. The critical pressure
pc=360 bar is larger than the
experimental value 220 bar.

The figure shows the resulting
pressures for water



Alternative equations of state
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As we see the agreement of the van der Waals equation of
state is not perfect. The agreement can be improved by using
either the Soave-Redlich-Kwong or the Peng-Robinson
equation of state
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For the liquid and around the critical point the agreement
remains unsatisfactory, however.

Further improvement can be obtained using the so-called
density functional theories (DFT). 

In our papers we always used the van der Waals equation of
state. We will therefore not further discuss SRK and PR.



We must find the other thermodynamic quantities for the van 
der Waals model. The Gibbs relation for the molar Helmholtz
energy is:

Integrating this over the volume we obtain:

We chose an integration constant such that this expression
reduces to the ideal gas one for smal c. The mean thermal
de Broglie wave length is:

NA is Avogrado’s number.

Differentiating with respect to T we find the molar entropy:

A and B were assumed to be independent of the temperature.



The molar Helmholtz energy and enthalpy satisfy:

This gives for the chemical potential, enthalpy and internal energy:

These quantities satisfy the Gibbs relation

and the Gibbs – Duhem relation



2. Van der Waals square gradient model of a 
one-component liquid-vapor interface

F ( ) ( ( ), )eq eq eq eqc x F c x T dx≡ Ω∫

In 1893 van der Waals introduced the following molar Helmholtz
energy density

He only used it for equilibrium surfaces with T independent of
the position and time and c independent of the time.

In equilibrium the concentration profile ceq(x) is such that

has a minimum for a given total mole number

N ( )eq eqc x dx≡ Ω∫



The resulting Euler-Lagrange equation is:
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The figure gives the density profile for water for a pressure of
200 bar and a 
temperature of
561.65 K. xs is a 
scaling length, to 
be defined later, 
which is of the
order of the
diameter of the
molecules.



We will use the molar Helmholtz energy that van der Waals 
introduced as a function of position and time dependent 
density and temperatue profiles

For the chemical potential and the pressure normal to the
surface we use

In equilibrium these quantities are both independent of x and t
We refer to the book by Rowlinson and Widom for a 
discussion of these choices.



We define the parallel pressure by

The molar entropy by

The molar internal energy by

The molar enthalpy by



• An important aspect in the choice of the above definitions is 
that all the normal thermodynamic relations are valid if one
uses the parallel pressure.

One of the reasons van der Waals introduced the square
gradient terms was to obtain a finite surface tension.

Minus the excess of the parallel pressure gives the surface
tension. As the parallel and the normal pressure are the same 
away from the surface, one finds in equilibrium:

Van der Waals used this expression to calculate the
equilibrium surface tension. 

• An interesting question is whether these expressions, and in 
particular the 2nd one, are still valid away from equilibrium?

Substituting the expressions given above he found:



Remarks
• The expressions for the parallel and normal pressure in a 1-

component system were derived elegantly by Yang, Fleming 
and Gibbs.

• The expression for the entropy, which does not have a 
gradient contribution, was motivated by van der Waals.

• All the thermodynamic relations are the same as in the
homogeneous phases, if one uses the parallel pressure rather
than the homogeneous pressure.

• In our analysis we need all these thermodynamic variables.
• In the litterature about the use of the square gradient model

for the non-equilibrium case one seems to avoid the use of
most of these thermodynamic variables, see e.g. Hohenberg
and Halperin.
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