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The first part of this lecture series will focus on the description
of the liquid-vapor interface in a one-component fluid.

| will use the 23rd chapter of a book | have written together with
Signe Kjelstrup:

Signe Kjelstrup and Dick Bedeaux, Series on Advances in Statistical
Mechanics-Vol. 16, Non-Equilibrium Thermodynamics of Heterogeneous
Systems, World Scientific, Singapore, 2008.

This chapter is based on earlier work | did with Eivind
Johannessen and Audun Rgsjorde on the non-equilibrium van
der Waals square gradient model:

* D. Bedeaux, E. Johannessen, A. Rgsjorde,

The Non-equilibrium van der Waals Square Gradient Model I: The Model and its
Numerical Solution, Physica A 330 (2003) 329-353.

* E. Johannessen and D. Bedeaux,

The Non-equilibrium van der Waals Square Gradient Model II: Local Equilibrium
of the Gibbs Surface, Physica A 330 (2003) 354-372.

* E. Johannessen and D. Bedeaux,

The Non-equilibrium van der Waals Square Gradient Model IIl: Heat and Mass
Transfer Coefficients, Physica A 336 (2004) 252-270



The book describes much of what we did on the
description of transport through and into interfaces

Series on Advances in Statistical Mechanics — Volume 16
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Transport of n-butane through and into a zeolite crystal.
e Molecular description
« Continuous description

« Macroscopic description with excess densities

All these descriptions have their strengths and weaknesses.

All three of them have something to add and should therefore
be pursued.

How they are related Is very important.



Just to show that really remarkable things happen at surfaces

Experiments Fang and Ward for the evaporation

of water
0
FPositioning B L
Micrometer UHV Pump or ) e
Vapor Vacuum -4 1 P 0¥
Val Pump o A
o - EE fy - } E W
2
Pressure 3 g Interface — Vapor
Manometer w7 | Double Walled §- i
Evapﬂﬁimn E 10 ]
Cham = Liguid fﬂn# mﬁﬂ
é Heat Exchanger 12 e pa
Water | | ‘14 o o B .
]jegg;m fier ]_"lﬁlf:diljgvﬂl‘l't 16 ] . |
Syringe Pump 4463 4465 4467 4469 447.1 4473
Height (mm)

Phys. Rev. E 59 (1999) 417-428

D. Bedeaux and S. Kjelstrup, Transfer Coefficients for Evaporation,
Physica A, 270 (1999) 413-426,



Experiments Badam, Kumar, Durst,
Danov for the evaporation of water
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Quote' Hence, The NET expression [or vapor phase heat [ux
which was derived by Bedeaux and Kjelstrup (53] seems 1o
predict the behaviour of the evaporalion process, The



1. The van der Waals equation of state

The van der Waals equation of state for one component is:
eRT RT A

At —

= T Be V_B V2

The resulting critical temperature, pressure and volume per
mole are:

T.=84/27RB. p. =A/27B" and V. = 3B

For water we use A=0.339
J m3mol-2 and B=1.87 10-°
m3mol-L. These reproduce
T.=646 K and V_=5.61 105

m3mol-L. The critical pressure 5.0e+07 |
p.=360 bar is larger than the \
experimental value 220 bar. /,_

The figure shows the resulting 0 L/ 1 )
-4 3
pressures for water Molar volume, 107 m"/mal

1.0e4+08 t

Fressure [ Pa




Alternative equations of state

As we see the agreement of the van der Waals equation of
state is not perfect. The agreement can be improved by using
either the Soave-Redlich-Kwong or the Peng-Robinson
equation of state

RTc  Ac? RTC Ac?

Psec =1 Be  1-Bo Per = 1T Bc 14 2Bc— BiC?

For the liquid and around the critical point the agreement
remains unsatisfactory, however.

Further improvement can be obtained using the so-called
density functional theories (DFT).

In our papers we always used the van der Waals equation of
state. We will therefore not further discuss SRK and PR.



We must find the other thermodynamic quantities for the van

der Waals model. The Gibbs relation for the molar Helmholtz

Shergy 1s. dFy = —Swdl — pwdV

Integrating this over the volume we obtain:

o e(V-B)] A e{1 — Be) |
Fyw = —RIl'In [ e ] —7 = —RT 111[ o ] — Ar
We chose an integration constant such that this expression
reduces to the ideal gas one for smal c. The mean thermal

de Broglie wave lengthis: A = N, h/ZTM I

N, Is Avogrado’s number.

Differentiating with respect to T we find the molar entropy:

L e(V-B] 3, e(l—Be)] 3
Sw = Rln [ TN, ] + ER —J-_t'lnl TN, ] + ER

A and B were assumed to be independent of the temperature.



The molar Helmholtz energy and enthalpy satisfy:

Fw=Uw —T5v =pw —pwV and Hw =Uw +pmV =pw + T 5w

This gives for the chemical potential, enthalpy and internal energy:

pw = —RTn :E IZ;;,.AEJ: + % - Eli
=Rl :E thﬂ_iw T 1ic - 24e
Uy = %RI - 1i - gﬂ'f _ Ae

These quantities satisfy the Gibbs relation  dryy, = TdSy — pwdV

and the Gibbs — Duhem relation -
duw = —Swdl + Vdpw



2. Van der Waals square gradient model of a
one-component liguid-vapor interface

In 1893 van der Waals introduced the following molar Helmholtz
energy density

F(z.t) = Fyy (e(z.£). T (. )) + —r ( 455 1) E
r.t) = Fwielzt),T(x, -
ll. J .H' l-. L l-. .II.II Elf'l::'_".l r:l l'jﬂ“

He only used it for equilibrium surfaces with T independent of
the position and time and c independent of the time.

In equilibrium the concentration profile ¢ ,(x) is such that

oy = Qf €y (OF (G (X), Ty )X

has a minimum for a given total mole number

Neq = Q[ ¢,y (X)X



The resulting Euler-Lagrange equation is:

0[Cq (IR (Ca (0N | d7e,(x)

2 p=0
OCqq (X) dx
The figure gives the density profile for water for a pressure of
3.5 . 200 bar and a

temperature of
561.65 K. X Is a
scaling length, to
be defined later,
which is of the
order of the
diameter of the
molecules.




We will use the molar Helmholtz energy that van der Waals
Introduced as a function of position and time dependent
density and temperatue profiles

m de(z, 1)\~
Fix. t)=Fwielz,t),T(x.t)) + Ly )

2e(xr, t) di

For the chemical potential and the pressure normal to the

surface we use d2e(z, t)
pla,t) = pw (efx, 1), T(x,t)) — m—=
Ly 2 2
o 1) ol )T f'“|+m de(x,t) |’ F_dm&:&f]
T, — lele, T, r, 1)) - — MCT,
pJ— ! 4 pl"' Tl ¥ 4 ll. .II 2 d:'_-' -'I da-.z

In equilibrium these quantities are both independent of x and t

We refer to the book by Rowlinson and Widom for a
discussion of these choices.

1.5, Rowlinson, B. Widom, Molecular Theory of Capillarity, Clarendon Press, Oxford, 1982



We define the parallel pressure by
py (e t) = el t) [pulzt) — flat)]

deix,t)
dx

d?e(x. f)
dx?

2
m
= pw (elx, t), Tz, 1)) — 5 ( ) —melx,t)

The molar entropy by

Sz, t) = (%) = (f—;) = Sw (e(z, 1), Tz, t))

The molar internal energy by
Uz, t) = Fix, t)+ T (z,t) 5z, 1)

=T (z,t)5(xt)— py(z. )V (z. 1)+ plz, 1)

_ m de(z,t)y°
= U (elz. ), T (x.8)) + -
1’1‘ . Tl § i l-. .-.II EEL:':*E-_:I ( di" )

The molar enthalpy by
Hixt)=Ulx,t)+py(z,t)V iz, t)=T(x,1)5(z,1) + plz,t)

ez, 1)

= Hw (elz,t).T(x. 1)) —
Wlcl T, i), L L)) — 1 T2



« An important aspect in the choice of the above definitions is
that all the normal thermodynamic relations are valid if one
uses the parallel pressure.

One of the reasons van der Waals introduced the square
gradient terms was to obtain a finite surface tension.

Minus the excess of the parallel pressure gives the surface
tension. As the parallel and the normal pressure are the same
away from the surface, one finds in equilibrium:

Teq = — f []'-"||.-5--:_r () — PL.eg ':TJ] da
Substituting the expressions given above he found:

ey (2] :
".req=mf( - ) dx

Van der Waals used this expression to calculate the
equilibrium surface tension.

e An interesting question is whether these expressions, and in
particular the 2nd one, are still valid away from equilibrium?



Remarks

The expressions for the parallel and normal pressure in a 1-
component system were derived elegantly by Yang, Fleming
and Gibbs.

The expression for the entropy, which does not have a
gradient contribution, was motivated by van der Waals.

All the thermodynamic relations are the same as in the
homogeneous phases, if one uses the parallel pressure rather
than the homogeneous pressure.

In our analysis we need all these thermodynamic variables.

In the litterature about the use of the square gradient model
for the non-equilibrium case one seems to avoid the use of
most of these thermodynamic variables, see e.g. Hohenberg
and Halperin.

A. 1. M. Yang, F. D. Fleming, and J. H. Gibbs, J. Chem. Phys.
64, 3732 (1976).

P.C. Hohenberg, B.J. Halperin, Eev. Mod. Phys. 49 (1977) 435
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